MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec17 Virtual memory for applications (Frans)

17.7 使用虚拟内存特性的GC代码展示

Previous17.6 使用虚拟内存特性的GCNextLec18 OS organization (Robert)

Last updated 4 years ago

Was this helpful?

为了更清晰的说明上一节的内容,我这里有个针对论文中方法的简单实现,我可以肯定它包含了一些bug,因为我并没有认真的测试它。

首先,应用程序使用的API包括了new和readptr。

readptr会检查指针是否位于from空间,如果是的话,那么它指向的对象需要被拷贝。当然,当我们使用虚拟内存时,这里的readptr成本会比较低,它会直接返回参数。在这个简单的例子中,我有一个循环链表,并且有两个根节点,其中一个指向链表的头节点,另一个指向链表的尾节点。

应用程序线程的工作是循环1000次,每次创建list,再检查list。

所以它会产生大量的垃圾,因为每次make_clist完成之后,再次make_clist,上一个list就成为垃圾了。所以GC必然会有一些工作要做。

make_clist的代码有点丑,主要是因为每个指针都需要被readptr检查包围。通常这里的检查代码是由编译器生成的。但是我这里并没有一个针对带GC的编程语言的编译器,所以我只能模仿一个编译器可能生成的内容。

make_clist会构建一个LISTSZ大小的链表,分配新的元素,并将新元素加到链表的起始位置,之后更新链表尾指针指向链表新的起始位置,这样就能构成一个循环链表。

这里更有趣的部分是,GC部分怎么实现。首先让我们看看如果没有虚拟内存会怎样。我们只需要查看两个API:new和readptr。

以上就是new的实现,先不考虑这里的mutex,因为这是为基于虚拟内存的实现提供的。先假设我们不需要扫描,也不需要collect。接下来会检查是否有足够的空间,如果有足够的空间,我们就将指针地址增加一些,以分配内存空间给新的对象,最后返回。

如果没有足够的空间,我们需要调用flip,也就是运行GC。

flip首先会切换from和to指针,之后将这个应用程序的两个根节点从from空间forward到to空间。接下来我们看一下forward函数。

这个函数会forward指针o指向的对象,首先检查指针o是不是在from空间,如果是的话,并且之前没有被拷贝过,那么就将它拷贝到to空间。如果之前拷贝过,那么就可以用to空间的指针代替对象指针,并将其返回。

对于readptr,如果我们没有使用虚拟内存。会对指针p做forward操作,forward操作的意思是如果对象在from空间,那么就将其拷贝到to空间,所以这里会有耗时的检查。

接下来我们看一下这里如何使用虚拟内存。

之后我们裁剪这个Shared-memory object到from和to空间的大小。

之后我们通过mmap先将其映射一次,以供mutator也就是实际的应用程序使用。然后再映射一次,以供GC使用。这里shm_open,ftruncate,和两次mmap,等效于map2。

回过去看之前的代码,

使用了虚拟内存之后,readptr将不做任何事情,直接将参数返回。当然,如果我们使用这里的指针,并且指针对应的对象位于unscanned区域,我们会得到Page Fault。

在Page Fault hanlder中,GC会运行scan函数。但是scan函数是以GC对应的PTE来运行的,所以它能工作。而同时,应用程序或者mutator不能访问这些Page,如果访问了的话,这会产生Page Fault。一旦scan执行完成,handler中会将Page设置成对应用程序可访问的(注,也就是调用mprotect)。

在flip函数中,

完成from和to空间的切换时,如果使用了虚拟内存,我们会通过mprotect将整个to空间对应用程序标记成不可访问的。之后GC将root_head和root_last移到to空间中,这样应用程序就不能访问这两个对象,任何时候应用程序需要访问这两个对象,都会导致一个Page Fault。在Page Fault handler中,GC可以将其他对象从from空间拷贝到to空间,然后再Unprot对应的Page。

在Page Fault handler中,先scan内存Page,再将内存Page标记成对应用程序可访问的这个顺序是至关重要的。因为如果你先将内存Page标记成应用程序可访问的,然后再扫描它,如果有多个应用程序线程,那么应用程序可能会查看到unscanned区域的对象。当然我们要禁止这一点(注,因为为了避免抢占,unscanned区域只能GC访问),所以这里的代码是先扫描,再增加内存的访问权限,这样应用程序就可以安全的访问这些内存Page。

接下来,我总结一下这节课的内容。有一个问题,你应该在这里使用虚拟内存吗?或者说这里的这些技巧值得吗?许多的GC并没有使用虚拟内存,而是通过编译器生成的代码来完成GC,并且还有各种其他的技巧来减少性能损耗。所以GC的大部分场景都可以通过一些额外的指令来完成。这对于一个编译器,程序运行时,或者编程语言来说,并不是一个太糟糕的选择,因为编译器就可以完成这些操作。但是如果没有程序运行时或者编译器,那么这个过程就会很痛苦。所以对于一些完全没有编译器参与的应用程序,例如checkpointing,shared-virtual memory,它们的确需要这里提到的虚拟内存特性。实际中,足够多的应用程序开发人员发现了这些特性的价值,所以今天的操作系统都支持了这些虚拟内存特性。

很多人问了这个问题,从91年(论文发表的年份)至今,虚拟内存系统发生了什么改变?其中一个改变是,大部分的Unix系统都支持了这些虚拟内存特性了,并且从91年至今有许多变化。或许很难想象,但是在虚拟内存系统中有持续的开发,所以如果你查看Linux的git log,你可以发现在内核的各个方面都有持续的开发,其中包括了对虚拟内存系统的持续开发。在过去有一些重大的改变,比如说:

  • 现在的Page Table是5级的,这样可以处理非常大的地址

  • 可以通过地址空间标识符来处理TLB flush

  • 大概一年前,一种叫做KPTI(kernel page table isolation)的功能被引入,它是针对Meltdown attack的功能

虚拟内存系统绝对不是一个静态的系统,几乎Linux内核的所有方向都不是静态的。几乎每两个月在内核的不同方向都会有大量的更新。所以每个子系统时不时的就会被重写。

学生提问:VMA中的连续地址是什么意思?

Frans教授:这里是指连续的虚拟内存地址,比如说一个VMA表示1000-2000这段地址。如果你有另一段地址,2100-2200,那么它会有属于自己的VMA。所以每个VMA覆盖了一段连续的地址,中间不会有中断。你们将会在mmap lab中看到这样的设计是更加的合理的。你们可以认为对于每个mmap系统调用,如果地址没有重叠的话,都会有一个VMA。

学生提问:GC什么时候会停止,什么时候又会再开始?我认为GC可以一直运行,如果它是并发的。

Frans教授:是的,基于虚拟内存的解决方案一个酷的地方在于,GC可以一直运行。它可以在没有unscanned对象时停止。

学生提问:但是你需要遍历所有在from空间的对象,你怎么知道已经遍历了所有的对象呢?

Frans教授:你会从根节点开始扫描整个对象的图,然后拷贝到to空间。在某个时间点,你不再添加新的对象了,因为所有的对象已经被拷贝过了。当你不再添加新的对象,你的unscanned区域就不再增长,如果它不再增长,那么你就遍历了所有的对象(注,可以想象一个普通的DFS或者BFS过程)。

首先是设置内存,通过创建一个Share-memory object,shm_open是一个Linux/Uinx系统调用。Share-memory object表现的像是一个文件,但是它并不是一个文件,它位于内存,并没有磁盘文件与之对应,如果你愿意的话,可以认为它是一个位于内存的文件系统。

shm_open