MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec05 Calling conventions and stack frames RISC-V (TA)

5.3 gdb和汇编代码执行

Previous5.2 RISC-V vs x86Next5.4 RISC-V寄存器

Last updated 4 years ago

Was this helpful?

接下来我们来看一些真实的汇编代码。

图中的代码,上半部分的注释是对应的C代码,这是个简单的函数,它累加了从1到n的所有数字,并返回结果。下半部分是可以编译出的最简单的汇编代码。如果你在你自己的计算机编写同样的C代码并编译,你得到的极有可能是差别较大的汇编代码。这里有很多原因,有一些原因我们之后会讲,有一些原因是因为编译器。当将C代码编译成汇编代码时,现代的编译器会执行各种各样的优化,所以你们自己编译得到的汇编代码可能看起来是不一样的。例如,当你在gdb中做debug的时候,有时候你会看到gdb提示你说某些变量被优化掉了,这意味着编译器决定了自己不再需要那个变量,变量以及相关的信息会在某个时间点删掉。

上图中的代码都很直观,首先将寄存器a0中的值保存在寄存器t0中。之后将寄存器a0设置为0,之后在每个循环中将t0中的数据加到a0中,直到t0变成0。这就是代码的所有内容。

学生提问:这里面.secion,.global,.text分别是什么意思?

TA:global表示你可以在其他文件中调用这个函数。text表明这里的是代码,如果你还记得XV6中的图3.4,

每个进程的page table中有一个区域是text,汇编代码中的text表明这部分是代码,并且位于page table的text区域中。text中保存的就是代码。

如果你对内核比较感兴趣,在编译完之后,你可以查看kernel.asm文件,你可以看到XV6完整内核的汇编版本。文件中每一行左边的数字表明的是这条指令会在内存中的哪个位置,这个信息非常有用。在汇编代码中还可以看到函数对应的label,以及它们是在哪里定义的。这些信息在我们调试代码的时候可能会非常非常有用,我稍后会展示这部分。

学生提问:.asm文件和.s文件有什么区别?

TA:我并不是百分百确定。这两类文件都是汇编代码,.asm文件中包含大量额外的标注,而.s文件中没有。所以通常来说当你编译你的C代码,你得到的是.s文件。如果你好奇我们是如何得到.asm文件,makefile里面包含了具体的步骤。

现在回到函数sum_to,我们看一下如何在gdb中检查这个函数。首先是要启动QEMU,

在另一个窗口打开gdb,

gdb中输入tui enable可以打开源代码展示窗口。

sum_to的代码现在都位于内核中,我在sum_to中设置一个断点。然后继续代码的执行,代码在断点处停住。

gdb窗口的左上角是程序计数器,我们可以看到当前的值是0x800065e2。如果我们去kernel.asm中,查找这个地址,我们可以看到这个地址就是sum_to函数的起始地址。

如果代码出现了问题,在gdb中看到的地址,你可以直接在kernel.asm找到具体的行,分析问题的原因,然后再向相应的地址设置断点。

在gdb中输入layout asm,可以在tui窗口看到所有的汇编指令。再输入layout reg可以看到所有的寄存器信息。

在寄存器窗口,可以看到t0,a0寄存器的值。在执行完一条汇编指令之后,t0寄存器拥有了a0寄存器的内容,也就是5。在寄存器窗口,更新了的寄存器会被高亮出来。

之后持续的单步执行代码,直到函数返回。

如果你关心你设置了哪些断点,或着你跟踪代码的时候迷糊了,你可以在gdb中输入info breakpoints,你可以看到所有设置了的断点。你甚至可以看到这个断点已经被命中了几次。

类似的,你也可以通过输入info reg查看寄存器的信息。

学生提问:你是怎么打开多个terminal窗口的?

TA:我是通过tmux打开的。(30:27 - 31:45在介绍tmux,与课程无关故跳过)

学生提问:为什么这里展示的是汇编代码而不是C代码?

TA:从最初的代码可以看出,这里的程序完全是汇编代码实现的,所以自然也没有关联的C程序。如果我将断点设置在C代码中,在命中断点之后输入layout split或者layout source,就可以看到相应的C代码了。

layout split会同时展现C代码和汇编,而layout source只会展示C代码。

学生提问:在C代码中,断点设置在某一行,如果这一行有多个语句的话,断点会设置在哪个语句?

TA:断点会设置在第一个语句。

gdb和tmux有上百个快捷指令,可以通过google去查找,对于gdb,也可以使用apropos指令查看帮助。