MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec01 Introduction and Examples (Robert)

1.5 read, write, exit系统调用

Previous1.4 课程结构和资源Next1.6 open系统调用

Last updated 4 years ago

Was this helpful?

接下来,我将讨论对于应用程序来说,系统调用长成什么样。因为系统调用是操作系统提供的服务的接口,所以系统调用长什么样,应用程序期望从系统调用得到什么返回,系统调用是怎么工作的,这些还是挺重要的。你会在第一个lab中使用我们在这里介绍的系统调用,并且在后续的lab中,扩展并提升这些系统调用的内部实现。

我接下来会展示一些简单的例子,这些例子中会执行系统调用,并且我会在XV6中运行这些例子。XV6是一个简化的类似Unix的操作系统,而Unix是一个老的操作系统,但是同时也是很多现代操作系统的基础,例如Linux,OSX。所以Unix使用的非常广泛。而作为我们教学用的操作系统,XV6就要简单的多。它是受Unix启发创造的,有着相同的文件结构,但是却要比任何真实的Unix操作系统都要简单的多。因为它足够简单,所以你们极有可能在几周内很直观的读完所有的代码,同时也把相应的书也看完,这样你们就能理解XV6内部发生的一切事情了。

XV6运行在一个RISC-V微处理器上,而RISC-V是MIT6.004课程讲解的处理器,所以你们很多人可能已经知道了RISC-V指令集。理论上,你可以在一个RISC-V计算机上运行XV6,已经有人这么做了。但是我们会在一个QEMU模拟器上运行XV6。

我这里会写下来,我们的操作系统是XV6,它运行在RISC-V微处理器上,当然不只是RISC-V微处理器,我们假设有一定数量的其他硬件存在,例如内存,磁盘和一个console接口,这样我们才能跟操作系统进行交互。但是实际上,XV6运行在QEMU模拟器之上。这样你们都能在没有特定硬件的前提下,运行XV6。

接下来,我会展示一下代码。首先,我会在我的笔记本上设置好XV6。首先输入make qemu,你会发现你在实验中会经常用到这个命令。这个命令会编译XV6,而XV6是用C语言写的。我首先执行一下make clean,这样你们就能看到完整的编译过程。

之后我输入make qemu,这条指令会编译并构建xv6内核和所有的用户进程,并将它们运行在QEMU模拟器下。

编译需要花费一定的时间。

现在xv6系统已经起来并运行了。$表示Shell,这是参照Unix上Shell的命令行接口。如果你用过Athena工作站,它的Shell与这里的非常像。XV6本身很小,并且自带了一小部分的工具程序,例如ls。我这里运行ls,它会输出xv6中的所有文件,这里只有20多个。

可以看到,这里还有grep,kill,mkdir和rm,或许你们对这些程序很熟悉,因为它们在Unix中也存在。

我向你们展示的第一个系统调用是一个叫做copy的程序。

它的源代码只有不到一页。你们这里看到的是一个程序,它从第8行的main开始,这是C程序的风格。它在第12行进入到一个循环中,在循环中,它会在第13行从输入读取一些数据,并在第16行,将数据写入到输出。如果我在XV6中运行这个copy程序,

它会等待输入。我随便输入一些字符,程序会读取我输入的字符,并将相同的字符输出给我。

如果你看第13行的read,它接收3个参数:

  • 第一个参数是文件描述符,指向一个之前打开的文件。Shell会确保默认情况下,当一个程序启动时,文件描述符0连接到console的输入,文件描述符1连接到了console的输出。所以我可以通过这个程序看到console打印我的输入。当然,这里的程序会预期文件描述符已经被Shell打开并设置好。这里的0,1文件描述符是非常普遍的Unix风格,许多的Unix系统都会从文件描述符0读取数据,然后向文件描述符1写入数据。

  • read的第二个参数是指向某段内存的指针,程序可以通过指针对应的地址读取内存中的数据,这里的指针就是代码中的buf参数。在代码第10行,程序在栈里面申请了64字节的内存,并将指针保存在buf中,这样read可以将数据保存在这64字节中。

  • read的第三个参数是代码想读取的最大长度,sizeof(buf)表示,最多读取64字节的数据,所以这里的read最多只能从连接到文件描述符0的设备,也就是console中,读取64字节的数据。

read的返回值可能是读到的字节数,在上面的截图中也就是6(xyzzy加上结束符)。read可能从一个文件读数据,如果到达了文件的结尾没有更多的内容了,read会返回0。如果出现了一些错误,比如文件描述符不存在,read或许会返回-1。在后面的很多例子中,比如第16行,我都没有通过检查系统调用的返回来判断系统调用是否出错,但是你应该比我更加小心,你应该清楚系统调用通常是通过返回-1来表示错误,你应该检查所有系统调用的返回值以确保没有错误。

如果你想知道所有的系统调用的参数和返回值是什么,在XV6书籍的第二章有一个表格。

学生提问:如果read的第三个参数设置成1 + sizeof(buf)会怎样?

Robert教授:如果第三个参数是65字节,操作系统会拷贝65个字节到你提供的内存中(第二个参数)。但是如果栈中的第65个字节有一些其他数据,那么这些数据会被覆盖,这里是个bug,或许会导致你的代码崩溃,或者一些异常的行为。所以,作为一个程序员,你必须要小心。C语言很容易写出一些编译器能通过的,但是最后运行时出错的代码。虽然很糟糕,但是现实就是这样。

有一件事情需要注意的事,这里的copy程序,或者说read,write系统调用,它们并不关心读写的数据格式,它们就是单纯的读写,而copy程序会按照8bit的字节流处理数据,你怎么解析它们,完全是用应用程序决定的。所以应用程序可能会解析这里的数据为C语言程序,但是操作系统只会认为这里的数据是按照8bit的字节流。

所以这是一个非常简单的程序。如你所看到的,这个程序是用C语言写的,如果你不懂C语言,那最好还是去读一本标准的。这个程序里面执行了3个系统调用,分别是read,write和exit。

C编程语言