MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec09 Interrupts (Frans)

9.6 UART驱动的bottom部分

Previous9.5 UART驱动的top部分Next9.7 Interrupt相关的并发

Last updated 4 years ago

Was this helpful?

在我们向Console输出字符时,如果发生了中断,RISC-V会做什么操作?我们之前已经在SSTATUS寄存器中打开了中断,所以处理器会被中断。假设键盘生成了一个中断并且发向了PLIC,PLIC会将中断路由给一个特定的CPU核,并且如果这个CPU核设置了SIE寄存器的E bit(注,针对外部中断的bit位),那么会发生以下事情:

  • 首先,会清除SIE寄存器相应的bit,这样可以阻止CPU核被其他中断打扰,该CPU核可以专心处理当前中断。处理完成之后,可以再次恢复SIE寄存器相应的bit。

  • 之后,会设置SEPC寄存器为当前的程序计数器。我们假设Shell正在用户空间运行,突然来了一个中断,那么当前Shell的程序计数器会被保存。

  • 之后,要保存当前的mode。在我们的例子里面,因为当前运行的是Shell程序,所以会记录user mode。

  • 再将mode设置为Supervisor mode。

  • 最后将程序计数器的值设置成STVEC的值。(注,STVEC用来保存trap处理程序的地址,详见lec06)在XV6中,STVEC保存的要么是uservec或者kernelvec函数的地址,具体取决于发生中断时程序运行是在用户空间还是内核空间。在我们的例子中,Shell运行在用户空间,所以STVEC保存的是uservec函数的地址。而从之前的课程我们可以知道uservec函数会调用usertrap函数。所以最终,我们在usertrap函数中。我们这节课不会介绍trap过程中的拷贝,恢复过程,因为在之前的课程中已经详细的介绍过了。

接下来看一下trap.c文件中的usertrap函数,我们在lec06和lec08分别在这个函数中处理了系统调用和page fault。今天我们将要看一下如何处理中断。

在trap.c的devintr函数中,首先会通过SCAUSE寄存器判断当前中断是否是来自于外设的中断。如果是的话,再调用plic_claim函数来获取中断。

plic_claim函数位于plic.c文件中。在这个函数中,当前CPU核会告知PLIC,自己要处理中断,PLIC_SCLAIM会将中断号返回,对于UART来说,返回的中断号是10。

从devintr函数可以看出,如果是UART中断,那么会调用uartintr函数。位于uart.c文件的uartintr函数,会从UART的接受寄存器中读取数据,之后将获取到的数据传递给consoleintr函数。哦,不好意思,我搞错了。我们现在讨论的是向UART发送数据。因为我们现在还没有通过键盘输入任何数据,所以UART的接受寄存器现在为空。

所以代码会直接运行到uartstart函数,这个函数会将Shell存储在buffer中的任意字符送出。实际上在提示符“$”之后,Shell还会输出一个空格字符,write系统调用可以在UART发送提示符“$”的同时,并发的将空格字符写入到buffer中。所以UART的发送中断触发时,可以发现在buffer中还有一个空格字符,之后会将这个空格字符送出。

这样,驱动的top部分和bottom部分就解耦开了。

学生提问: UART对于键盘来说很重要,来自于键盘的字符通过UART走到CPU再到我们写的代码。但是我不太理解UART对于Shell输出字符究竟有什么作用?因为在这个场景中,并没有键盘的参与。

Frans教授:显示设备与UART也是相连的。所以UART连接了两个设备,一个是键盘,另一个是显示设备,也就是Console。QEMU也是通过模拟的UART与Console进行交互,而Console的作用就是将字符在显示器上画出来。

(注,以下问答来自课程结束部分,与本节内容时间上并不连续)

学生提问:uartinit只被调用了一次,所以才导致了所有的CPU核都共用一个buffer吗?

Frans教授:因为只有一个UART设备,一个buffer只针对一个UART设备,而这个buffer会被所有的CPU核共享,这样运行在多个CPU核上的多个程序可以同时向Console打印输出,而驱动中是通过锁来确保多个CPU核上的程序串行的向Console打印输出。

学生提问:我们之所以需要锁是因为有多个CPU核,但是却只有一个Console,对吧?

Frans教授:是的,如我们之前说的驱动的top和bottom部分可以并行的运行。所以一个CPU核可以执行uartputc函数,而另个一CPU核可以执行uartintr函数,我们需要确保它们是串行执行的,而锁确保了这一点。

学生提问:那是不是意味着,某个时间,其他所有的CPU核都需要等待某一个CPU核的处理?

Frans教授:这里并不是死锁。其他的CPU核还是可以在等待的时候运行别的进程。