M
M
MIT6.S081
Search…
⌃K

9.6 UART驱动的bottom部分

在我们向Console输出字符时,如果发生了中断,RISC-V会做什么操作?我们之前已经在SSTATUS寄存器中打开了中断,所以处理器会被中断。假设键盘生成了一个中断并且发向了PLIC,PLIC会将中断路由给一个特定的CPU核,并且如果这个CPU核设置了SIE寄存器的E bit(注,针对外部中断的bit位),那么会发生以下事情:
  • 首先,会清除SIE寄存器相应的bit,这样可以阻止CPU核被其他中断打扰,该CPU核可以专心处理当前中断。处理完成之后,可以再次恢复SIE寄存器相应的bit。
  • 之后,会设置SEPC寄存器为当前的程序计数器。我们假设Shell正在用户空间运行,突然来了一个中断,那么当前Shell的程序计数器会被保存。
  • 之后,要保存当前的mode。在我们的例子里面,因为当前运行的是Shell程序,所以会记录user mode。
  • 再将mode设置为Supervisor mode。
  • 最后将程序计数器的值设置成STVEC的值。(注,STVEC用来保存trap处理程序的地址,详见lec06)在XV6中,STVEC保存的要么是uservec或者kernelvec函数的地址,具体取决于发生中断时程序运行是在用户空间还是内核空间。在我们的例子中,Shell运行在用户空间,所以STVEC保存的是uservec函数的地址。而从之前的课程我们可以知道uservec函数会调用usertrap函数。所以最终,我们在usertrap函数中。我们这节课不会介绍trap过程中的拷贝,恢复过程,因为在之前的课程中已经详细的介绍过了。
接下来看一下trap.c文件中的usertrap函数,我们在lec06和lec08分别在这个函数中处理了系统调用和page fault。今天我们将要看一下如何处理中断。
在trap.c的devintr函数中,首先会通过SCAUSE寄存器判断当前中断是否是来自于外设的中断。如果是的话,再调用plic_claim函数来获取中断。
plic_claim函数位于plic.c文件中。在这个函数中,当前CPU核会告知PLIC,自己要处理中断,PLIC_SCLAIM会将中断号返回,对于UART来说,返回的中断号是10。
从devintr函数可以看出,如果是UART中断,那么会调用uartintr函数。位于uart.c文件的uartintr函数,会从UART的接受寄存器中读取数据,之后将获取到的数据传递给consoleintr函数。哦,不好意思,我搞错了。我们现在讨论的是向UART发送数据。因为我们现在还没有通过键盘输入任何数据,所以UART的接受寄存器现在为空。
所以代码会直接运行到uartstart函数,这个函数会将Shell存储在buffer中的任意字符送出。实际上在提示符“$”之后,Shell还会输出一个空格字符,write系统调用可以在UART发送提示符“$”的同时,并发的将空格字符写入到buffer中。所以UART的发送中断触发时,可以发现在buffer中还有一个空格字符,之后会将这个空格字符送出。
这样,驱动的top部分和bottom部分就解耦开了。
学生提问: UART对于键盘来说很重要,来自于键盘的字符通过UART走到CPU再到我们写的代码。但是我不太理解UART对于Shell输出字符究竟有什么作用?因为在这个场景中,并没有键盘的参与。
Frans教授:显示设备与UART也是相连的。所以UART连接了两个设备,一个是键盘,另一个是显示设备,也就是Console。QEMU也是通过模拟的UART与Console进行交互,而Console的作用就是将字符在显示器上画出来。
(注,以下问答来自课程结束部分,与本节内容时间上并不连续)
学生提问:uartinit只被调用了一次,所以才导致了所有的CPU核都共用一个buffer吗?
Frans教授:因为只有一个UART设备,一个buffer只针对一个UART设备,而这个buffer会被所有的CPU核共享,这样运行在多个CPU核上的多个程序可以同时向Console打印输出,而驱动中是通过锁来确保多个CPU核上的程序串行的向Console打印输出。
学生提问:我们之所以需要锁是因为有多个CPU核,但是却只有一个Console,对吧?
Frans教授:是的,如我们之前说的驱动的top和bottom部分可以并行的运行。所以一个CPU核可以执行uartputc函数,而另个一CPU核可以执行uartintr函数,我们需要确保它们是串行执行的,而锁确保了这一点。
学生提问:那是不是意味着,某个时间,其他所有的CPU核都需要等待某一个CPU核的处理?
Frans教授:这里并不是死锁。其他的CPU核还是可以在等待的时候运行别的进程。