MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec06 Isolation & system call entry/exit (Robert)

6.6 usertrap函数

Previous6.5 uservec函数Next6.7 usertrapret函数

Last updated 4 years ago

Was this helpful?

usertrap函数是位于trap.c文件的一个函数。

既然我们已经运行在C代码中,接下来,我在gdb中输入tui enable打开对于C代码的展示。

我们现在在一个更加正常的世界中,我们正在运行C代码,应该会更容易理解。我们仍然会读写一些有趣的控制寄存器,但是环境比起汇编语言来说会少了很多晦涩。

有很多原因都可以让程序运行进入到usertrap函数中来,比如系统调用,运算时除以0,使用了一个未被映射的虚拟地址,或者是设备中断。usertrap某种程度上存储并恢复硬件状态,但是它也需要检查触发trap的原因,以确定相应的处理方式,我们在接下来执行usertrap的过程中会同时看到这两个行为。

接下来,让我们一步步执行usertrap函数。

它做的第一件事情是更改STVEC寄存器。取决于trap是来自于用户空间还是内核空间,实际上XV6处理trap的方法是不一样的。目前为止,我们只讨论过当trap是由用户空间发起时会发生什么。如果trap从内核空间发起,将会是一个非常不同的处理流程,因为从内核发起的话,程序已经在使用kernel page table。所以当trap发生时,程序执行仍然在内核的话,很多处理都不必存在。

在内核中执行任何操作之前,usertrap中先将STVEC指向了kernelvec变量,这是内核空间trap处理代码的位置,而不是用户空间trap处理代码的位置。

出于各种原因,我们需要知道当前运行的是什么进程,我们通过调用myproc函数来做到这一点。myproc函数实际上会查找一个根据当前CPU核的编号索引的数组,CPU核的编号是hartid,如果你还记得,我们之前在uservec函数中将它存在了tp寄存器。这是myproc函数找出当前运行进程的方法。

接下来我们要保存用户程序计数器,它仍然保存在SEPC寄存器中,但是可能发生这种情况:当程序还在内核中执行时,我们可能切换到另一个进程,并进入到那个程序的用户空间,然后那个进程可能再调用一个系统调用进而导致SEPC寄存器的内容被覆盖。所以,我们需要保存当前进程的SEPC寄存器到一个与该进程关联的内存中,这样这个数据才不会被覆盖。这里我们使用trapframe来保存这个程序计数器。

接下来我们需要找出我们现在会在usertrap函数的原因。根据触发trap的原因,RISC-V的SCAUSE寄存器会有不同的数字。数字8表明,我们现在在trap代码中是因为系统调用。可以打印SCAUSE寄存器,它的确包含了数字8,我们的确是因为系统调用才走到这里的。

所以,我们可以进到这个if语句中。接下来第一件事情是检查是不是有其他的进程杀掉了当前进程,但是我们的Shell没有被杀掉,所以检查通过。

在RISC-V中,存储在SEPC寄存器中的程序计数器,是用户程序中触发trap的指令的地址。但是当我们恢复用户程序时,我们希望在下一条指令恢复,也就是ecall之后的一条指令。所以对于系统调用,我们对于保存的用户程序计数器加4,这样我们会在ecall的下一条指令恢复,而不是重新执行ecall指令。

XV6会在处理系统调用的时候使能中断,这样中断可以更快的服务,有些系统调用需要许多时间处理。中断总是会被RISC-V的trap硬件关闭,所以在这个时间点,我们需要显式的打开中断。

下一行代码中,我们会调用syscall函数。这个函数定义在syscall.c。

它的作用是从syscall表单中,根据系统调用的编号查找相应的系统调用函数。如果你还记得之前的内容,Shell调用的write函数将a7设置成了系统调用编号,对于write来说就是16。所以syscall函数的工作就是获取由trampoline代码保存在trapframe中a7的数字,然后用这个数字索引实现了每个系统调用的表单。

我们可以打印num,的确是16。这与Shell调用的write函数写入的数字是一致的。

之后查看通过num索引得到的函数,正是sys_write函数。sys_write函数是内核对于write系统调用的具体实现。这里再往后的代码执行就非常复杂了,我就不具体介绍了。在这节课中,对于系统调用的实现,我只对进入和跳出内核感兴趣。这里我让代码直接执行sys_write函数。

这里有件有趣的事情,系统调用需要找到它们的参数。你们还记得write函数的参数吗?分别是文件描述符2,写入数据缓存的指针,写入数据的长度2。syscall函数直接通过trapframe来获取这些参数,就像这里刚刚可以查看trapframe中的a7寄存器一样,我们可以查看a0寄存器,这是第一个参数,a1是第二个参数,a2是第三个参数。

现在syscall执行了真正的系统调用,之后sys_write返回了。

这里向trapframe中的a0赋值的原因是:所有的系统调用都有一个返回值,比如write会返回实际写入的字节数,而RISC-V上的C代码的习惯是函数的返回值存储于寄存器a0,所以为了模拟函数的返回,我们将返回值存储在trapframe的a0中。之后,当我们返回到用户空间,trapframe中的a0槽位的数值会写到实际的a0寄存器,Shell会认为a0寄存器中的数值是write系统调用的返回值。执行完这一行代码之后,我们打印这里trapframe中a0的值,可以看到输出2。

这意味这sys_write的返回值是2,符合传入的参数,这里只写入了2个字节。

从syscall函数返回之后,我们回到了trap.c中的usertrap函数。

我们再次检查当前用户进程是否被杀掉了,因为我们不想恢复一个被杀掉的进程。当然,在我们的场景中,Shell没有被杀掉。

最后,usertrap调用了一个函数usertrapret。