MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec06 Isolation & system call entry/exit (Robert)

6.7 usertrapret函数

Previous6.6 usertrap函数Next6.8 userret函数

Last updated 4 years ago

Was this helpful?

usertrap函数的最后调用了usertrapret函数,来设置好我之前说过的,在返回到用户空间之前内核要做的工作。我们可以查看这个函数的内容。

它首先关闭了中断。我们之前在系统调用的过程中是打开了中断的,这里关闭中断是因为我们将要更新STVEC寄存器来指向用户空间的trap处理代码,而之前在内核中的时候,我们指向的是内核空间的trap处理代码(6.6)。我们关闭中断因为当我们将STVEC更新到指向用户空间的trap处理代码时,我们仍然在内核中执行代码。如果这时发生了一个中断,那么程序执行会走向用户空间的trap处理代码,即便我们现在仍然在内核中,出于各种各样具体细节的原因,这会导致内核出错。所以我们这里关闭中断。

在下一行我们设置了STVEC寄存器指向trampoline代码,在那里最终会执行sret指令返回到用户空间。位于trampoline代码最后的sret指令会重新打开中断。这样,即使我们刚刚关闭了中断,当我们在执行用户代码时中断是打开的。

接下来的几行填入了trapframe的内容,这些内容对于执行trampoline代码非常有用。这里的代码就是:

  • 存储了kernel page table的指针

  • 存储了当前用户进程的kernel stack

  • 存储了usertrap函数的指针,这样trampoline代码才能跳转到这个函数(注,详见6.5中 ld t0 (16)a0 指令)

  • 从tp寄存器中读取当前的CPU核编号,并存储在trapframe中,这样trampoline代码才能恢复这个数字,因为用户代码可能会修改这个数字

现在我们在usertrapret函数中,我们正在设置trapframe中的数据,这样下一次从用户空间转换到内核空间时可以用到这些数据。

学生提问:为什么trampoline代码中不保存SEPC寄存器?

Robert教授:可以存储。trampoline代码没有像其他寄存器一样保存这个寄存器,但是我们非常欢迎大家修改XV6来保存它。如果你还记得的话(详见6.6),这个寄存器实际上是在C代码usertrap中保存的,而不是在汇编代码trampoline中保存的。我想不出理由这里哪种方式更好。用户寄存器(User Registers)必须在汇编代码中保存,因为任何需要经过编译器的语言,例如C语言,都不能修改任何用户寄存器。所以对于用户寄存器,必须要在进入C代码之前在汇编代码中保存好。但是对于SEPC寄存器(注,控制寄存器),我们可以早点保存或者晚点保存。

接下来我们要设置SSTATUS寄存器,这是一个控制寄存器。这个寄存器的SPP bit位控制了sret指令的行为,该bit为0表示下次执行sret的时候,我们想要返回user mode而不是supervisor mode。这个寄存器的SPIE bit位控制了,在执行完sret之后,是否打开中断。因为我们在返回到用户空间之后,我们的确希望打开中断,所以这里将SPIE bit位设置为1。修改完这些bit位之后,我们会把新的值写回到SSTATUS寄存器。

我们在trampoline代码的最后执行了sret指令。这条指令会将程序计数器设置成SEPC寄存器的值,所以现在我们将SEPC寄存器的值设置成之前保存的用户程序计数器的值。在不久之前,我们在usertrap函数中将用户程序计数器保存在trapframe中的epc字段。

接下来,我们根据user page table地址生成相应的SATP值,这样我们在返回到用户空间的时候才能完成page table的切换。实际上,我们会在汇编代码trampoline中完成page table的切换,并且也只能在trampoline中完成切换,因为只有trampoline中代码是同时在用户和内核空间中映射。但是我们现在还没有在trampoline代码中,我们现在还在一个普通的C函数中,所以这里我们将page table指针准备好,并将这个指针作为第二个参数传递给汇编代码,这个参数会出现在a1寄存器。

倒数第二行的作用是计算出我们将要跳转到汇编代码的地址。我们期望跳转的地址是tampoline中的userret函数,这个函数包含了所有能将我们带回到用户空间的指令。所以这里我们计算出了userret函数的地址。

倒数第一行,将fn指针作为一个函数指针,执行相应的函数(也就是userret函数)并传入两个参数,两个参数存储在a0,a1寄存器中。