MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec06 Isolation & system call entry/exit (Robert)

6.3 ECALL指令之前的状态

Previous6.2 Trap代码执行流程Next6.4 ECALL指令之后的状态

Last updated 4 years ago

Was this helpful?

接下来,我将切换到gdb的世界中。 大家可以看我共享的屏幕,我们将要跟踪一个XV6的系统调用,也就是Shell将它的提示信息通过write系统调用走到操作系统再输出到console的过程。你们可以看到,用户代码sh.c初始了这一切。

上图中选中的行,是一个write系统调用,它将“$ ”写入到文件描述符2。接下来我将打开gdb并启动XV6。

作为用户代码的Shell调用write时,实际上调用的是关联到Shell的一个库函数。你可以查看这个库函数的源代码,在usys.s。

上面这几行代码就是实际被调用的write函数的实现。这是个非常短的函数,它首先将SYS_write加载到a7寄存器,SYS_write是常量16。这里告诉内核,我想要运行第16个系统调用,而这个系统调用正好是write。之后这个函数中执行了ecall指令,从这里开始代码执行跳转到了内核。内核完成它的工作之后,代码执行会返回到用户空间,继续执行ecall之后的指令,也就是ret,最终返回到Shell中。所以ret从write库函数返回到了Shell中。

为了展示这里的系统调用,我会在ecall指令处放置一个断点,为了能放置断点,我们需要知道ecall指令的地址,我们可以通过查看由XV6编译过程产生的sh.asm找出这个地址。sh.asm是带有指令地址的汇编代码(注,asm文件3.7有介绍)。我这里会在ecall指令处放置一个断点,这条指令的地址是0xde6。

现在,我要让XV6开始运行。我期望的是XV6在Shell代码中正好在执行ecall之前就会停住。

完美,从gdb可以看出,我们下一条要执行的指令就是ecall。我们来检验一下我们真的在我们以为自己在的位置,让我们来打印程序计数器(Program Counter),正好我们期望在的位置0xde6。

我们还可以输入info reg打印全部32个用户寄存器,

这里有一些数值我们还不知道,也不关心,但是这里的a0,a1,a2是Shell传递给write系统调用的参数。所以a0是文件描述符2;a1是Shell想要写入字符串的指针;a2是想要写入的字符数。我们还可以通过打印Shell想要写入的字符串内容,来证明断点停在我们认为它应该停在的位置。

可以看出,输出的确是美元符($)和一个空格。所以,我们现在位于我们期望所在的write系统调用函数中。

有一件事情需要注意,上图的寄存器中,程序计数器(pc)和堆栈指针(sp)的地址现在都在距离0比较近的地址,这进一步印证了当前代码运行在用户空间,因为用户空间中所有的地址都比较小。但是一旦我们进入到了内核,内核会使用大得多的内存地址。

系统调用的时间点会有大量状态的变更,其中一个最重要的需要变更的状态,并且在它变更之前我们对它还有依赖的,就是是当前的page table。我们可以查看STAP寄存器。

这里输出的是物理内存地址,它并没有告诉我们有关page table中的映射关系是什么,page table长什么样。但是幸运的是,在QEMU中有一个方法可以打印当前的page table。从QEMU界面,输入ctrl a + c可以进入到QEMU的console,之后输入info mem,QEMU会打印完整的page table。

这是个非常小的page table,它只包含了6条映射关系。这是用户程序Shell的page table,而Shell是一个非常小的程序,这6条映射关系是有关Shell的指令和数据,以及一个无效的page用来作为guard page,以防止Shell尝试使用过多的stack page。我们可以看出这个page是无效的,因为在attr这一列它并没有设置u标志位(第三行)。attr这一列是PTE的标志位,第三行的标志位是rwx表明这个page可以读,可以写,也可以执行指令。之后的是u标志位,它表明PTE_u标志位是否被设置,用户代码只能访问u标志位设置了的PTE。再下一个标志位我也不记得是什么了(注,从4.3可以看出,这个标志位是Global)。再下一个标志位是a(Accessed),表明这条PTE是不是被使用过。再下一个标志位d(Dirty)表明这条PTE是不是被写过。

现在,我们有了这个小小的page table。顺便说一下,最后两条PTE的虚拟地址非常大,非常接近虚拟地址的顶端,如果你读过了XV6的书,你就知道这两个page分别是trapframe page和trampoline page。你可以看到,它们都没有设置u标志,所以用户代码不能访问这两条PTE。一旦我们进入到了supervisor mode,我们就可以访问这两条PTE了。

对于这里page table,有一件事情需要注意:它并没有包含任何内核部分的地址映射,这里既没有对于kernel data的映射,也没有对于kernel指令的映射。除了最后两条PTE,这个page table几乎是完全为用户代码执行而创建,所以它对于在内核执行代码并没有直接特殊的作用。

学生提问:PTE中a标志位是什么意思?

Robert教授:这表示这条PTE是不是被代码访问过,是不是曾经有一个被访问过的地址包含在这个PTE的范围内。d标志位表明是否曾经有写指令使用过这条PTE。这些标志位由硬件维护以方便操作系统使用。对于比XV6更复杂的操作系统,当物理内存吃紧的时候,可能会通过将一些内存写入到磁盘来,同时将相应的PTE设置成无效,来释放物理内存page。你可以想到,这里有很多策略可以让操作系统来挑选哪些page可以释放。我们可以查看a标志位来判断这条PTE是否被使用过,如果它没有被使用或者最近没有被使用,那么这条PTE对应的page适合用来保存到磁盘中。类似的,d标志位告诉内核,这个page最近被修改过。

不过XV6没有这样的策略。

接下来,我会在Shell中打印出write函数的内容。

程序计数器现在指向ecall指令,我们接下来要执行ecall指令。现在我们还在用户空间,但是马上我们就要进入内核空间了。