MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec14 File systems (Frans)

14.5 File system工作示例

Previous14.4 inodeNext14.6 XV6创建inode代码展示

Last updated 4 years ago

Was this helpful?

接下来我们看一下实际中,XV6的文件系统是如何工作的,这部分内容对于下一个lab是有帮助的。

首先我会启动XV6,这里有件事情我想指出。启动XV6的过程中,调用了makefs指令,来创建一个文件系统。

所以makefs创建了一个全新的磁盘镜像,在这个磁盘镜像中包含了我们在指令中传入的一些文件。makefs为你创建了一个包含这些文件的新的文件系统。

XV6总是会打印文件系统的一些信息,所以从指令的下方可以看出有46个meta block,其中包括了:

  • boot block

  • super block

  • 30个log block

  • 13个inode block

  • 1个bitmap block

之后是954个data block。所以这是一个袖珍级的文件系统,总共就包含了1000个block。在File system lab中,你们会去支持更大的文件系统。

我还稍微修改了一下XV6,使得任何时候写入block都会打印出block的编号。我们从console的输出可以看出,在XV6启动过程中,会有一些对于文件系统的调用,并写入了block 33,45,32。

接下来我们运行一些命令,来看一下特定的命令对哪些block做了写操作,并理解为什么要对这些block写入数据。我们通过echo “hi” > x,来创建一个文件x,并写入字符“hi”。我会将输出拷贝出来,并做分隔以方便我们更好的理解。

这里会有几个阶段

  1. 第一阶段是创建文件

  2. 第二阶段将“hi”写入文件

  3. 第三阶段将“\n”换行符写入到文件

如果你去看echo的代码实现,基本就是这3个阶段。

上面就是echo的代码,它先检查参数,并将参数写入到文件描述符1,在最后写入一个换行符。

让我们一个阶段一个阶段的看echo的执行过程,并理解对于文件系统发生了什么。相比看代码,这里直接看磁盘的分布图更方便:

你们觉得的write 33代表了什么?我们正在创建文件,所以我们期望文件系统干什么呢?

学生回答:这是在写inode。

是的,看起来给我们分配的inode位于block 33。之所以有两个write 33,第一个是为了标记inode将要被使用。在XV6中,我记得是使用inode中的type字段来标识inode是否空闲,这个字段同时也会用来表示inode是一个文件还是一个目录。所以这里将inode的type从空闲改成了文件,并写入磁盘表示这个inode已经被使用了。第二个write 33就是实际的写入inode的内容。inode的内容会包含linkcount为1以及其他内容。

write 46是向第一个data block写数据,那么这个data block属于谁呢?

学生回答:属于根目录。

是的,block 46是根目录的第一个block。为什么它需要被写入数据呢?

学生回答:因为我们正在向根目录创建一个新文件。

是的,这里我们向根目录增加了一个新的entry,其中包含了文件名x,以及我们刚刚分配的inode编号。

接下来的write 32又是什么意思呢?block 32保存的仍然是inode,那么inode中的什么发生了变化使得需要将更新后的inode写入磁盘?是的,根目录的大小变了,因为我们刚刚添加了16个字节的entry来代表文件x的信息。

最后又有一次write 33,我在稍后会介绍这次写入的内容,这里我们再次更新了文件x的inode, 尽管我们又还没有写入任何数据。

以上就是第一阶段创建文件的过程。第二阶段是向文件写入“hi”。

首先是write 45,这是更新bitmap。文件系统首先会扫描bitmap来找到一个还没有使用的data block,未被使用的data block对应bit 0。找到之后,文件系统需要将该bit设置为1,表示对应的data block已经被使用了。所以更新block 45是为了更新bitmap。

接下来的两次write 595表明,文件系统挑选了data block 595。所以在文件x的inode中,第一个direct block number是595。因为写入了两个字符,所以write 595被调用了两次。

第二阶段最后的write 33是更新文件x对应的inode中的size字段,因为现在文件x中有了两个字符。

学生提问:block 595看起来在磁盘中很靠后了,是因为前面的block已经被系统内核占用了吗?

Frans教授:我们可以看前面makefs指令,makefs存了很多文件在磁盘镜像中,这些都发生在创建文件x之前,所以磁盘中很大一部分已经被这些文件填满了。

学生提问:第二阶段最后的write 33是否会将block 595与文件x的inode关联起来?

Frans教授:会的。这里的write 33会发生几件事情:首先inode的size字段会更新;第一个direct block number会更新。这两个信息都会通过write 33一次更新到磁盘上的inode中。

以上就是磁盘中文件系统的组织结构的核心,希望你们都能理解背后的原理。