MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec05 Calling conventions and stack frames RISC-V (TA)

5.2 RISC-V vs x86

Previous5.1 C程序到汇编程序的转换Next5.3 gdb和汇编代码执行

Last updated 4 years ago

Was this helpful?

你们将会注意到,我们在这节课中反复会提到了RISC-V汇编。这一点很重要,因为汇编语言有很多种(注,因为不同的处理器指令集不一样,而汇编语言中都是一条条指令,所以不同处理器对应的汇编语言必然不一样)。如果你使用RISC-V,你不太能将Linux运行在上面。相应的,大多数现代计算机都运行在x86和x86-64处理器上。x86拥有一套不同的指令集,看起来与RISC-V非常相似。通常你们的个人电脑上运行的处理器是x86,Intel和AMD的CPU都实现了x86。

RISC-V和x86并没有它们第一眼看起来那么相似。RISC-V中的RISC是精简指令集(Reduced Instruction Set Computer)的意思,而x86通常被称为CISC,复杂指令集(Complex Instruction Set Computer)。这两者之间有一些关键的区别:

  • 首先是指令的数量。实际上,创造RISC-V的一个非常大的初衷就是因为Intel手册中指令数量太多了。x86-64指令介绍由3个文档组成,并且新的指令以每个月3条的速度在增加。因为x86-64是在1970年代发布的,所以我认为现在有多于15000条指令。RISC-V指令介绍由两个文档组成。在这节课中,不需要你们记住每一个RISC-V指令,但是如果你感兴趣或者你发现你不能理解某个具体的指令的话,在课程网站的参考页面有RISC-V指令的两个文档链接。这两个文档包含了RISC-V的指令集的所有信息,分别是240页和135页,相比x86的指令集文档要小得多的多。这是有关RISC-V比较好的一个方面。所以在RISC-V中,我们有更少的指令数量。

  • 除此之外,RISC-V指令也更加简单。在x86-64中,很多指令都做了不止一件事情。这些指令中的每一条都执行了一系列复杂的操作并返回结果。但是RISC-V不会这样做,RISC-V的指令趋向于完成更简单的工作,相应的也消耗更少的CPU执行时间。这其实是设计人员的在底层设计时的取舍。并没有一些非常确定的原因说RISC比CISC更好。它们各自有各自的使用场景。

  • 相比x86来说,RISC另一件有意思的事情是它是开源的。这是市场上唯一的一款开源指令集,这意味着任何人都可以为RISC-V开发主板。RISC-V是来自于UC-Berkly的一个研究项目,之后被大量的公司选中并做了支持,网上有这些公司的名单,许多大公司对于支持一个开源指令集都感兴趣。

我记得最近,作为主要的RISC-V处理器生产商,SiFive宣称会发布一款基于RISC-V的主板,用来在个人计算机上运行Linux系统。如果你好奇或者想要使用RISC-V,在你学完了6.S081之后,大概率你可以在你的个人电脑上通过RISC-V处理器运行Linux。

在你们的日常生活中,你们可能已经在完全不知情的情况下使用了精简指令集。比如说ARM也是一个精简指令集,高通的Snapdragon处理器就是基于ARM。如果你使用一个Android手机,那么大概率你的手机运行在精简指令集上。如果你使用IOS,苹果公司也实现某种版本的ARM处理器,这些处理器运行在iPad,iPhone和大多数苹果移动设备上,甚至对于Mac,苹果公司也在尝试向ARM做迁移(注,刚刚发布的Macbook)。所以精简指令集出现在各种各样的地方。如果你想在现实世界中找到RISC-V处理器,你可以在一些嵌入式设备中找到。所以RISC-V也是有应用的,当然它可能没有x86那么流行。

在最近几年,由于Intel的指令集是在是太大了,精简指令集的使用越来越多。Intel的指令集之所以这么大,是因为Intel对于向后兼容非常看重。所以一个现代的Intel处理器还可以运行30/40年前的指令。Intel并没有下线任何指令。而RISC-V提出的更晚,所以不存在历史包袱的问题。

学生提问:为什么x86会有15000条指令?

TA:如我刚刚说的,我们需要许多指令来实现向后兼容,向后兼容是否重要因人而异。另一方面,我认为这里许多指令都是cmd指令,用来完成一些特殊的操作。我从来没有见过一个Intel的汇编代码使用了所有的15000个指令。大多数这些指令都是为了向后兼容和cmd的需求创建。

如果查看RISC-V的文档,可以发现RISC-V的特殊之处在于:它区分了Base Integer Instruction Set和Standard Extension Instruction Set。Base Integer Instruction Set包含了所有的常用指令,比如add,mult。除此之外,处理器还可以选择性的支持Standard Extension Instruction Set。例如,一个处理器可以选择支持Standard Extension for Single-Precision Float-Point。这种模式使得RISC-V更容易支持向后兼容。 每一个RISC-V处理器可以声明支持了哪些扩展指令集,然后编译器可以根据支持的指令集来编译代码。

学生提问:看起来使用x86而不是RISC-V的唯一优势就是能得到性能的提升,但是这里的性能是以复杂度和潜在的安全为代价的,我的问题是为什么我们还在使用x86,而不是使用RISC-V处理器?

TA:我并没有一个很好的答案来回答。现在整个世界都运行在x86上,如果你突然将处理器转变成RISC-V,那么你就会失去很多重要的软件支持。同时,Intel在它的处理器里面做了一些有意思的事情,例如安全相关的enclave,这是Intel最近加到处理器中来提升安全性的功能。此外,Intel还实现了一些非常具体的指令,这些指令可以非常高效的进行一些特定的运算。所以Intel有非常多的指令,通常来说对于一个场景都会有一个完美的指令,它的执行效率要高于RISC-V中的同等指令。但是这个问题更实际的答案是,RISC-V相对来说更新一些,目前还没有人基于RISC-V来制造个人计算机,SiFive也就是最近才成为第一批将RISC-V应用到个人计算机的公司。所以,从实际的角度来说,因为不能在RISC-V上运行所有为Intel设计的软件,是我对这个问题的最好的答案。