MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec11 Thread switching (Robert)

11.8 XV6线程切换 --- scheduler函数

Previous11.7 XV6线程切换 --- switch函数Next11.9 XV6线程第一次调用switch函数

Last updated 4 years ago

Was this helpful?

来看一下scheduler的完整代码,

现在我们正运行在CPU拥有的调度器线程中,并且我们正好在之前调用swtch函数的返回状态。之前调度器线程调用switch是因为想要运行pid为3的进程,也就是刚刚被中断的spin程序。

虽然pid为3的spin进程也调用了swtch函数,但是那个switch并不是当前返回的这个switch。spin进程调用的swtch函数还没有返回,而是保存在了pid为3的栈和context对象中。现在返回的是之前调度器线程对于swtch函数的调用。

在scheduler函数中,因为我们已经停止了spin进程的运行,所以我们需要抹去对于spin进程的记录。我们接下来将c->proc设置为0(c->proc = 0;)。因为我们现在并没有在这个CPU核上运行这个进程,为了不让任何人感到困惑,我们这里将CPU核运行的进程对象设置为0。

之前在yield函数中获取了进程的锁,因为yield不想进程完全进入到Sleep状态之前,任何其他的CPU核的调度器线程看到这个进程并运行它。而现在我们完成了从spin进程切换走,所以现在可以释放锁了。这就是release(&p->lock)的意义。现在,我们仍然在scheduler函数中,但是其他的CPU核可以找到spin进程,并且因为spin进程是RUNABLE状态,其他的CPU可以运行它。这没有问题,因为我们已经完整的保存了spin进程的寄存器,并且我们不在spin进程的栈上运行程序,而是在当前CPU核的调度器线程栈上运行程序,所以其他的CPU核运行spin程序并没有问题。但是因为启动QEMU时我们只指定了一个核,所以在我们现在的演示中并没有其他的CPU核来运行spin程序。

接下来我将简单介绍一下p->lock。从调度的角度来说,这里的锁完成了两件事情。

首先,出让CPU涉及到很多步骤,我们需要将进程的状态从RUNNING改成RUNABLE,我们需要将进程的寄存器保存在context对象中,并且我们还需要停止使用当前进程的栈。所以这里至少有三个步骤,而这三个步骤需要花费一些时间。所以锁的第一个工作就是在这三个步骤完成之前,阻止任何一个其他核的调度器线程看到当前进程。锁这里确保了三个步骤的原子性。从CPU核的角度来说,三个步骤要么全发生,要么全不发生。

第二,当我们开始要运行一个进程时,p->lock也有类似的保护功能。当我们要运行一个进程时,我们需要将进程的状态设置为RUNNING,我们需要将进程的context移到RISC-V的寄存器中。但是,如果在这个过程中,发生了中断,从中断的角度来说进程将会处于一个奇怪的状态。比如说进程的状态是RUNNING,但是又还没有将所有的寄存器从context对象拷贝到RISC-V寄存器中。所以,如果这时候有了一个定时器中断将会是个灾难,因为我们可能在寄存器完全恢复之前,从这个进程中切换走。而从这个进程切换走的过程中,将会保存不完整的RISC-V寄存器到进程的context对象中。所以我们希望启动一个进程的过程也具有原子性。在这种情况下,切换到一个进程的过程中,也需要获取进程的锁以确保其他的CPU核不能看到这个进程。同时在切换到进程的过程中,还需要关闭中断,这样可以避免定时器中断看到还在切换过程中的进程。(注,这就是为什么468行需要加锁的原因)

现在我们在scheduler函数的循环中,代码会检查所有的进程并找到一个来运行。现在我们知道还有另一个进程,因为我们之前fork了另一个spin进程。这里我跳过进程检查,直接在找到RUNABLE进程的位置设置一个断点。

在代码的468行,获取了进程的锁,所以现在我们可以进行切换到进程的各种步骤。在代码的473行,进程的状态被设置成了RUNNING。代码的474行将找到的RUNABLE进程记录为当前CPU执行的进程。代码的475行,又调用了swtch函数来保存调度器线程的寄存器,并恢复目标进程的寄存器(注,实际上恢复的是目标进程的内核线程)。我们可以打印新的进程的名字来查看新的进程。

可以看到进程名还是spin,但是pid已经变成了4,而前一个进程的pid是3。我们还可以查看目标进程的context对象,

其中ra寄存器的内容就是我们要切换到的目标线程的代码位置。虽然我们在代码475行调用的是swtch函数,但是我们前面已经看过了swtch函数会返回到即将恢复的ra寄存器地址,所以我们真正关心的就是ra指向的地址。

通过打印这个地址的内容,可以看到swtch函数会返回到sched函数中。这完全在意料之中,因为可以预期的是,将要切换到的进程之前是被定时器中断通过sched函数挂起的,并且之前在sched函数中又调用了swtch函数。

在swtch函数的最开始,我们仍然在调度器线程中,但是这一次是从调度器线程切换到目标进程的内核线程。所以从swtch函数内部将会返回到目标进程的内核线程的sched函数,通过打印backtrace,

我们可以看到,之前有一个usertrap的调用,这必然是之前因为定时器中断而出现的调用。之后在中断处理函数中还调用了yield和sched函数,正如我们之前看到的一样。但是,这里调用yield和sched函数是在pid为4的进程调用的,而不是我们刚刚看的pid为3的进程。

学生提问:如果不是因为定时器中断发生的切换,我们是不是可以期望ra寄存器指向其他位置,例如sleep函数?

Robert教授:是的,我们之前看到了代码执行到这里会包含一些系统调用相关的函数。你基本上回答了自己的问题,如果我们因为定时器中断之外的原因而停止了执行当前的进程,switch会返回到一些系统调用的代码中,而不是我们这里看到sched函数。我记得sleep最后也调用了sched函数,虽然bracktrace可能看起来会不一样,但是还是会包含sched。所以我这里只介绍了一种进程间切换的方法,也就是因为定时器中断而发生切换。但是还有其他的可能会触发进程切换,例如等待I/O或者等待另一个进程向pipe写数据。

这里有件事情需要注意,调度器线程调用了swtch函数,但是我们从swtch函数返回时,实际上是返回到了对于switch的另一个调用,而不是调度器线程中的调用。我们返回到的是pid为4的进程在很久之前对于switch的调用。这里可能会有点让人困惑,但是这就是线程切换的核心。

另一件需要注意的事情是,swtch函数是线程切换的核心,但是swtch函数中只有保存寄存器,再加载寄存器的操作。线程除了寄存器以外的还有很多其他状态,它有变量,堆中的数据等等,但是所有的这些数据都在内存中,并且会保持不变。我们没有改变线程的任何栈或者堆数据。所以线程切换的过程中,处理器中的寄存器是唯一的不稳定状态,且需要保存并恢复。而所有其他在内存中的数据会保存在内存中不被改变,所以不用特意保存并恢复。我们只是保存并恢复了处理器中的寄存器,因为我们想在新的线程中也使用相同的一组寄存器。