MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec17 Virtual memory for applications (Frans)

17.1 应用程序使用虚拟内存所需要的特性

PreviousLec17 Virtual memory for applications (Frans)Next17.2 支持应用程序使用虚拟内存的系统调用

Last updated 4 years ago

Was this helpful?

今天的话题是用户应用程序使用的虚拟内存,它主要是受这篇1991年的的启发。

首先,你们已经知道了,操作系统内核以非常灵活的方式使用了虚拟内存Page Table。你们已经通过Lazy Allocation Lab,Copy on Write Lab,以及XV6中的各种内存实现了解到了这一点。而今天论文中的核心观点是,用户应用程序也应该从灵活的虚拟内存中获得收益,也就是说用户应用程序也可以使用虚拟内存。用户应用程序本身就是运行在虚拟内存之上,我们这里说的虚拟内存是指:User Mode或者应用程序想要使用与内核相同的机制,来产生Page Fault并响应Page Fault(注,详见Lec08,内核中几乎所有的虚拟内存技巧都基于Page Fault)。也就是说User Mode需要能够修改PTE的Protection位(注,Protection位是PTE中表明对当前Page的保护,对应了4.3中的Writeable和Readable位)或者Privileged level。今天的论文,通过查看6-7种不同的应用程序,来说明用户应用程序使用虚拟内存的必要性。这些应用程序包括了:

  • Garbage Collector

  • Data Compression Application

  • Shared Virtual Memory

你可以发现这都是一些非常不同的应用程序,并且它们都依赖虚拟内存的一些特性来正常工作。所以第一个问题是,上面的应用程序需要的特性是什么?所以我们先来讨论一下需要的特性是什么?

  • 首先,你需要trap来使得发生在内核中的Page Fault可以传播到用户空间,然后在用户空间的handler可以处理相应的Page Fault,之后再以正常的方式返回到内核并恢复指令的执行。这个特性是必须的,否则的话,你不能基于Page Fault做任何事情。

  • 第二个特性是Prot1,它会降低了一个内存Page的accessability。accessability的意思是指内存Page的读写权限。内存Page的accessability有不同的降低方式,例如,将一个可以读写的Page变成只读的,或者将一个只读的Page变成完全没有权限。

  • 除了对于每个内存Page的Prot1,还有管理多个Page的ProtN。ProtN基本上等效于调用N次Prot1,那为什么还需要有ProtN?因为单次ProtN的损耗比Prot1大不了多少,使用ProtN可以将成本分摊到N个Page,使得操作单个Page的性能损耗更少。在使用Prot1时,你需要修改PTE的bit位,并且在Prot1的结束时,需要清除TLB(注,详见4.4 Translation Lookaside Buffer),而清除TLB比较费时。如果能对所有需要修改的内存Page集中清理一次TLB,就可以将成本分摊。所以ProtN等效于修改PTE的bit位N次,再加上清除一次TLB。如果执行了N次Prot1,那就是N次修改PTE的bit位,再加上清除N次TLB,所以ProtN可以减少清除TLB的次数,进而提升性能。

  • 下一个特性是Unprot,它增加了内存Page的accessability,例如将本来只读的Page变成可读可写的。

  • 除此之外,还需要能够查看内存Page是否是Dirty。

  • 以及map2。map2使得一个应用程序可以将一个特定的内存地址空间映射两次,并且这两次映射拥有不同的accessability(注,也就是一段物理内存对应两份虚拟内存,并且两份虚拟内存有不同的accessability)。

XV6在用户程序中支持以上任意的特性吗?除了有类似于trap及其相关的alarm hander之外,XV6不支持任何一个以上的特性。XV6只有一个最小化的Unix接口,并不支持以上任何虚拟内存特性。尽管在XV6的内核中包含了所有的可用的虚拟内存的机制,但是并没有以系统调用的形式将它们暴露给用户空间。论文的观点是,任何一个好的操作系统都应该以系统调用的形式提供以上特性,以供应用程序使用。

所以自然的,这就引出了另一个问题,当今的Unix系统的功能范围是什么?以上特性属于Unix的范畴吗?如果你查看现在的Unix系统,例如Linux,你会发现,或许并不与论文中描述的完全一样,但是这些特性都存在。在论文那个年代(1991年),某些操作系统只包含了部分以上特性,但是如今这些特性都已经在现代的Unix系统中广泛支持了。接下来我们看一下如何实现这些特性。

论文