MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec17 Virtual memory for applications (Frans)

17.6 使用虚拟内存特性的GC

Previous17.5 Baker's Real-Time Copying Garbage CollectorNext17.7 使用虚拟内存特性的GC代码展示

Last updated 4 years ago

Was this helpful?

论文中介绍,如果拥有了前面提到的虚拟内存特性,你可以使用虚拟内存来减少指针检查的损耗,并且以几乎零成本的代价来并行运行GC。这里的基本思想是将heap内存中from和to空间,再做一次划分,每一个部分包含scanned,unscanned两个区域。在程序启动,或者刚刚完成了from和to空间的切换时,整个空间都是unscanned,因为其中还没有任何对象。

之后的过程与前面描述的相同,在开始GC时,我们将根节点对象拷贝到to空间,但是根节点中的指针还是指向了位于from空间的对象。现在unscanned区域包括了所有的对象(注,现在只有根节点),我们会将unscanned区域的权限设置为None。这意味着,当开始GC之后,应用程序第一次使用根节点,它会得到Page Fault,因为这部分内存的权限为None。

在Page Fault Handler中,GC需要扫描位于内存Page中所有的对象,然后将这些对象所指向的其他对象从from空间forward到to空间。所以,在GC最开始的时候,我们将根节点拷贝过来了;之后在Page Fault Handler中通过扫描,将根节点指向的对象也都拷贝过来了。在我们的例子中根节点指向的只有两个对象,这两个对象会被拷贝到unscanned区域中,而根节点会被标记成scanned。在我们扫描完一个内存Page中的对象时,我们可以通过Unprot(注,详见17.1)恢复对应内存Page的权限。

之后,应用程序就可以访问特定的对象,因为我们将对象中的指针转换成了可以安全暴露给应用程序的指针(注,因为这些指针现在指向了位于to空间的对象),所以应用程序可以访问这些指针。当然这些指针对应的对象中还没有被扫描。如果dereference这些指针,我们会再次得到Page Fault,之后我们会继续扫描。

这种方案的好处是,它仍然是递增的GC,因为每次只需要做一小部分GC的工作。除此之外,它还有额外的优势:现在不需要对指针做额外的检查了(注,也就是不需要查看指针是不是指向from空间,如果是的话,将其forward到to空间)。或者说指针检查还在,只是现在通过虚拟内存相关的硬件来完成了。

学生提问:刚刚说到在Handler里面会扫描一个Page中的所有对象,但是对象怎么跟内存Page对应起来呢?

Frans教授:在最开始的时候,to空间是没有任何对象的。当需要forward的时候,我刚刚描述的是拷贝一个对象,但是实际上拷贝的是一个内存Page中的N个对象,这样它们可以填满整个Page。所以现在我们在to空间中,有N个对象位于一个Page中,并且它们都没有被扫描。之后某个时间,Page Fault Handler会被调用,GC会遍历这个内存Page上的N个对象,并检查它们的指针。对于这些指针,GC会将对应的对象拷贝到to空间的unscanned区域中。之后,当应用程序使用了这些未被扫描的对象,它会再次得到Page Fault,进而再扫描这些对象,以此类推。

学生提问:在完成了GC之后,会切换from和to空间吗?

Frans教授:最开始我们使用的是from空间,当用完了的时候,你会将对象拷贝到to空间,一旦完成了扫描,from空间也被完全清空了,你可以切换两个空间的名字。现在会使用to空间来完成内存分配。直到它也满了,你会再次切换。

论文中提到使用虚拟内存的另一个好处是,它简化了GC的并发。GC现在可以遍历未被扫描的内存Page,并且一次扫描一个Page,同时可以确保应用程序不能访问这个内存Page,因为对于应用程序来说,未被扫描的内存Page权限为None。虚拟内存硬件引入了这种显式的同步机制,或者说对于抢占的保护。

现在只有GC可以访问未被扫描的内存Page,而应用程序不能访问。所以这里提供了自动的并发,应用程序可以运行并完成它的工作,GC也可以完成自己的工作,它们不会互相得罪,因为一旦应用程序访问了一个未被扫描的Page,它就会得到一个Page Fault。而GC也永远不会访问扫描过的Page,所以也永远不会干扰到应用程序。所以这里以近乎零成本获取到了并发性。

但是实际上有个麻烦的问题。回到我们之前那张图,我们在heap中有from空间,to空间。在to空间中又分为了unscanned和scanned区域,对于应用程序来说,unscanned区域中的Page权限为None。

这就引出了另一个问题,GC怎么能访问这个区域的内存Page?因为对于应用程序来说,这些Page是inaccessible。

这里的技巧是使用map2(注,详见17.1)。这里我们会将同一个物理内存映射两次,第一次是我们之前介绍的方式,也就是为应用程序进行映射,第二次专门为GC映射。在GC的视角中,我们仍然有from和to空间。在to空间的unscanned区域中,Page具有读写权限。

所以GC可以遍历这些内存Page,读取内容并forward必要的对象。这里使用了map2将物理内存映射到应用程序地址空间中两次的能力,其中每次映射都有不同的权限,这样这里的场景才能工作。

学生提问:GC和应用程序是不是有不同的Page Table?

Frans教授:不,它们拥有相同的Page Table。它们只是将物理内存映射到了地址空间的两个位置,也就是Page Table的两个位置。在一个位置,PTE被标记成invalid,在另一个位置,PTE被标记成可读写的。