MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec10 Multiprocessors and locking (Frans)

10.2 锁如何避免race condition?

Previous10.1 为什么要使用锁?Next10.3 什么时候使用锁?

Last updated 4 years ago

Was this helpful?

首先你们在脑海里应该有多个CPU核在运行,比如说CPU0在运行指令,CPU1也在运行指令,这两个CPU核都连接到同一个内存上。在前面的代码中,数据freelist位于内存中,它里面记录了2个内存page。假设两个CPU核在相同的时间调用kfree。

kfree函数接收一个物理地址pa作为参数,freelist是个单链表,kfree中将pa作为单链表的新的head节点,并更新freelist指向pa(注,也就是将空闲的内存page加在单链表的头部)。当两个CPU都调用kfree时,CPU0想要释放一个page,CPU1也想要释放一个page,现在这两个page都需要加到freelist中。

kfree中首先将对应内存page的变量r指向了当前的freelist(也就是单链表当前的head节点)。我们假设CPU0先运行,那么CPU0会将它的变量r的next指向当前的freelist。如果CPU1在同一时间运行,它可能在CPU0运行第二条指令(kmem.freelist = r)之前运行代码。所以它也会完成相同的事情,它会将自己的变量r的next指向当前的freelist。现在两个物理page对应的变量r都指向了同一个freelist(注,也就是原来单链表的head节点)。

接下来,剩下的代码也会并行的执行(kmem.freelist = r),这行代码会更新freelist为r。因为我们这里只有一个内存,所以总是有一个CPU会先执行,另一个后执行。我们假设CPU0先执行,那么freelist会等于CPU0的变量r。之后CPU1再执行,它又会将freelist更新为CPU1的变量r。这样的结果是,我们丢失了CPU0对应的page。CPU0想要释放的内存page最终没有出现在freelist数据中。

这是一种具体的坏的结果,当然可能会有更多坏的结果,因为可能会有更多的CPU。例如第三个CPU可能会短暂的发现freelist等于CPU0对应的变量r,并且使用这个page,但是之后很快freelist又被CPU1更新了。所以,拥有越多的CPU,我们就可能看到比丢失page更奇怪的现象。

在代码中,用来解决这里的问题的最常见方法就是使用锁。

接下来让我具体的介绍一下锁。锁就是一个对象,就像其他在内核中的对象一样。有一个结构体叫做lock,它包含了一些字段,这些字段中维护了锁的状态。锁有非常直观的API:

  • acquire,接收指向lock的指针作为参数。acquire确保了在任何时间,只会有一个进程能够成功的获取锁。

  • release,也接收指向lock的指针作为参数。在同一时间尝试获取锁的其他进程需要等待,直到持有锁的进程对锁调用release。

锁的acquire和release之间的代码,通常被称为critical section。

之所以被称为critical section,是因为通常会在这里以原子的方式执行共享数据的更新。所以基本上来说,如果在acquire和release之间有多条指令,它们要么会一起执行,要么一条也不会执行。所以永远也不可能看到位于critical section中的代码,如同在race condition中一样在多个CPU上交织的执行,所以这样就能避免race condition。

现在的程序通常会有许多锁。实际上,XV6中就有很多的锁。为什么会有这么多锁呢?因为锁序列化了代码的执行。如果两个处理器想要进入到同一个critical section中,只会有一个能成功进入,另一个处理器会在第一个处理器从critical section中退出之后再进入。所以这里完全没有并行执行。

如果内核中只有一把大锁,我们暂时将之称为big kernel lock。基本上所有的系统调用都会被这把大锁保护而被序列化。系统调用会按照这样的流程处理:一个系统调用获取到了big kernel lock,完成自己的操作,之后释放这个big kernel lock,再返回到用户空间,之后下一个系统调用才能执行。这样的话,如果我们有一个应用程序并行的调用多个系统调用,这些系统调用会串行的执行,因为我们只有一把锁。所以通常来说,例如XV6的操作系统会有多把锁,这样就能获得某种程度的并发执行。如果两个系统调用使用了两把不同的锁,那么它们就能完全的并行运行。

这里有几点很重要,首先,并没有强制说一定要使用锁,锁的使用完全是由程序员决定的。如果你想要一段代码具备原子性,那么其实是由程序员决定是否增加锁的acquire和release。其次,代码不会自动加锁,程序员自己要确定好是否将锁与数据结构关联,并在适当的位置增加锁的acquire和release。