MIT6.S081
  • 简介
  • Lec01 Introduction and Examples (Robert)
    • 1.1 课程内容简介
    • 1.2 操作系统结构
    • 1.3 Why Hard and Interesting
    • 1.4 课程结构和资源
    • 1.5 read, write, exit系统调用
    • 1.6 open系统调用
    • 1.7 Shell
    • 1.8 fork系统调用
    • 1.9 exec, wait系统调用
    • 1.10 I/O Redirect
  • Lec03 OS Organization and System Calls (Frans)
    • 3.1 上一节课回顾
    • 3.2 操作系统隔离性(isolation)
    • 3.3 操作系统防御性(Defensive)
    • 3.4 硬件对于强隔离的支持
    • 3.5 User/Kernel mode切换
    • 3.6 宏内核 vs 微内核 (Monolithic Kernel vs Micro Kernel)
    • 3.7 编译运行kernel
    • 3.8 QEMU
    • 3.9 XV6 启动过程
  • Lec04 Page tables (Frans)
    • 4.1 课程内容简介
    • 4.2 地址空间(Address Spaces)
    • 4.3 页表(Page Table)
    • 4.4 页表缓存(Translation Lookaside Buffer)
    • 4.5 Kernel Page Table
    • 4.6 kvminit 函数
    • 4.7 kvminithart 函数
    • 4.8 walk 函数
  • Lec05 Calling conventions and stack frames RISC-V (TA)
    • 5.1 C程序到汇编程序的转换
    • 5.2 RISC-V vs x86
    • 5.3 gdb和汇编代码执行
    • 5.4 RISC-V寄存器
    • 5.5 Stack
    • 5.6 Struct
  • Lec06 Isolation & system call entry/exit (Robert)
    • 6.1 Trap机制
    • 6.2 Trap代码执行流程
    • 6.3 ECALL指令之前的状态
    • 6.4 ECALL指令之后的状态
    • 6.5 uservec函数
    • 6.6 usertrap函数
    • 6.7 usertrapret函数
    • 6.8 userret函数
  • Lec08 Page faults (Frans)
    • 8.1 Page Fault Basics
    • 8.2 Lazy page allocation
    • 8.3 Zero Fill On Demand
    • 8.4 Copy On Write Fork
    • 8.5 Demand Paging
    • 8.6 Memory Mapped Files
  • Lec09 Interrupts (Frans)
    • 9.1 真实操作系统内存使用情况
    • 9.2 Interrupt硬件部分
    • 9.3 设备驱动概述
    • 9.4 在XV6中设置中断
    • 9.5 UART驱动的top部分
    • 9.6 UART驱动的bottom部分
    • 9.7 Interrupt相关的并发
    • 9.8 UART读取键盘输入
    • 9.9 Interrupt的演进
  • Lec10 Multiprocessors and locking (Frans)
    • 10.1 为什么要使用锁?
    • 10.2 锁如何避免race condition?
    • 10.3 什么时候使用锁?
    • 10.4 锁的特性和死锁
    • 10.5 锁与性能
    • 10.6 XV6中UART模块对于锁的使用
    • 10.7 自旋锁(Spin lock)的实现(一)
    • 10.8 自旋锁(Spin lock)的实现(二)
  • Lec11 Thread switching (Robert)
    • 11.1 线程(Thread)概述
    • 11.2 XV6线程调度
    • 11.3 XV6线程切换(一)
    • 11.4 XV6线程切换(二)
    • 11.5 XV6进程切换示例程序
    • 11.6 XV6线程切换 --- yield/sched函数
    • 11.7 XV6线程切换 --- switch函数
    • 11.8 XV6线程切换 --- scheduler函数
    • 11.9 XV6线程第一次调用switch函数
  • Lec13 Sleep & Wake up (Robert)
    • 13.1 线程切换过程中锁的限制
    • 13.2 Sleep&Wakeup 接口
    • 13.3 Lost wakeup
    • 13.4 如何避免Lost wakeup
    • 13.5 Pipe中的sleep和wakeup
    • 13.6 exit系统调用
    • 13.7 wait系统调用
    • 13.8 kill系统调用
  • Lec14 File systems (Frans)
    • 14.1 Why Interesting
    • 14.2 File system实现概述
    • 14.3 How file system uses disk
    • 14.4 inode
    • 14.5 File system工作示例
    • 14.6 XV6创建inode代码展示
    • 14.7 Sleep Lock
  • Lec15 Crash recovery (Frans)
    • 15.1 File system crash概述
    • 15.2 File system crash示例
    • 15.3 File system logging
    • 15.4 log_write函数
    • 15.5 end_op函数
    • 15.6 File system recovering
    • 15.7 Log写磁盘流程
    • 15.8 File system challenges
  • Lec16 File system performance and fast crash recovery (Robert)
    • 16.1 Why logging
    • 16.2 XV6 File system logging回顾
    • 16.3 ext3 file system log format
    • 16.4 ext3如何提升性能
    • 16.5 ext3文件系统调用格式
    • 16.6 ext3 transaction commit步骤
    • 16.7 ext3 file system恢复过程
    • 16.8 为什么新transaction需要等前一个transaction中系统调用执行完成
    • 16.9 总结
  • Lec17 Virtual memory for applications (Frans)
    • 17.1 应用程序使用虚拟内存所需要的特性
    • 17.2 支持应用程序使用虚拟内存的系统调用
    • 17.3 虚拟内存系统如何支持用户应用程序
    • 17.4 构建大的缓存表
    • 17.5 Baker's Real-Time Copying Garbage Collector
    • 17.6 使用虚拟内存特性的GC
    • 17.7 使用虚拟内存特性的GC代码展示
  • Lec18 OS organization (Robert)
    • 18.1 Monolithic kernel
    • 18.2 Micro kernel
    • 18.3 Why micro kernel?
    • 18.4 L4 micro kernel
    • 18.5 Improving IPC by Kernel Design
    • 18.6 Run Linux on top of L4 micro kernel
    • 18.7 L4 Linux性能分析
  • Lec19 Virtual Machines (Robert)
    • 19.1 Why Virtual Machine?
    • 19.2 Trap-and-Emulate --- Trap
    • 19.3 Trap-and-Emulate --- Emulate
    • 19.4 Trap-and-Emulate --- Page Table
    • 19.5 Trap-and-Emulate --- Devices
    • 19.6 硬件对虚拟机的支持
    • 19.7 Dune: Safe User-level Access to Privileged CPU Features
  • Lec20 Kernels and HLL (Frans)
    • 20.1 C语言实现操作系统的优劣势
    • 20.2 高级编程语言实现操作系统的优劣势
    • 20.3 高级编程语言选择 --- Golang
    • 20.4 Biscuit
    • 20.5 Heap exhaustion
    • 20.6 Heap exhaustion solution
    • 20.7 Evaluation: HLL benefits
    • 20.8 Evaluation: HLL performance cost(1)
    • 20.9 Evaluation: HLL performance cost(2)
    • 20.10 Should one use HLL for a new kernel?
  • Lec21 Networking (Robert)
    • 21.1计算机网络概述
    • 21.2 二层网络 --- Ethernet
    • 21.3 二/三层地址转换 --- ARP
    • 21.4 三层网络 --- Internet
    • 21.5 四层网络 --- UDP
    • 21.6 网络协议栈(Network Stack)
    • 21.7 Ring Buffer
    • 21.8 Receive Livelock
    • 21.9 如何解决Livelock
  • Lec22 Meltdown (Robert)
    • 22.1 Meltdown发生的背景
    • 22.2 Speculative execution(1)
    • 22.3 Speculative execution(2)
    • 22.4 CPU caches
    • 22.5 Flush and Reload
    • 22.6 Meltdown Attack
    • 22.7 Meltdown Fix
  • Lec23 RCU (Robert)
    • 23.1 使用锁带来的问题
    • 23.2 读写锁 (Read-Write Lock)
    • 23.3 RCU实现(1) - 基本实现
    • 23.4 RCU实现(2) - Memory barrier
    • 23.5 RCU实现(3) - 读写规则
    • 23.6 RCU用例代码
    • 23.7 RCU总结
Powered by GitBook
On this page

Was this helpful?

  1. Lec08 Page faults (Frans)

8.5 Demand Paging

Previous8.4 Copy On Write ForkNext8.6 Memory Mapped Files

Last updated 4 years ago

Was this helpful?

接下来我们将介绍Demand paging。这是另一个非常流行的功能,许多操作系统都实现了它。

我们回到exec,在未修改的XV6中,操作系统会加载程序内存的text,data区域,并且以eager的方式将这些区域加载进page table。

但是根据我们在lazy allocation和zero-filled on demand的经验,为什么我们要以eager的方式将程序加载到内存中?为什么不再等等,直到应用程序实际需要这些指令的时候再加载内存?程序的二进制文件可能非常的巨大,将它全部从磁盘加载到内存中将会是一个代价很高的操作。又或者data区域的大小远大于常见的场景所需要的大小,我们并不一定需要将整个二进制都加载到内存中。

所以对于exec,在虚拟地址空间中,我们为text和data分配好地址段,但是相应的PTE并不对应任何物理内存page。对于这些PTE,我们只需要将valid bit位设置为0即可。

如果我们修改XV6使其按照上面的方式工作,我们什么时候会得到第一个page fault呢?或者说,用户应用程序运行的第一条指令是什么?用户应用程序在哪里启动的?

应用程序是从地址0开始运行。text区域从地址0开始向上增长。位于地址0的指令是会触发第一个page fault的指令,因为我们还没有真正的加载内存。

那么该如何处理这里的page fault呢?首先我们可以发现,这些page是on-demand page。我们需要在某个地方记录了这些page对应的程序文件,我们在page fault handler中需要从程序文件中读取page数据,加载到内存中;之后将内存page映射到page table;最后再重新执行指令。

之后程序就可以运行了。在最坏的情况下,用户程序使用了text和data中的所有内容,那么我们将会在应用程序的每个page都收到一个page fault。但是如果我们幸运的话,用户程序并没有使用所有的text区域或者data区域,那么我们一方面可以节省一些物理内存,另一方面我们可以让exec运行的更快(注,因为不需要为整个程序分配内存)。

前面描述的流程其实是有点问题的。我们将要读取的文件,它的text和data区域可能大于物理内存的容量。又或者多个应用程序按照demand paging的方式启动,它们二进制文件的和大于实际物理内存的容量。对于demand paging来说,假设内存已经耗尽了或者说OOM了,这个时候如果得到了一个page fault,需要从文件系统拷贝中拷贝一些内容到内存中,但这时你又没有任何可用的物理内存page,这其实回到了之前的一个问题:在lazy allocation中,如果内存耗尽了该如何办?

如果内存耗尽了,一个选择是撤回page(evict page)。比如说将部分内存page中的内容写回到文件系统再撤回page。一旦你撤回并释放了page,那么你就有了一个新的空闲的page,你可以使用这个刚刚空闲出来的page,分配给刚刚的page fault handler,再重新执行指令。

重新运行指令稍微有些复杂,这包含了整个userret函数背后的机制以及将程序运行切换回用户空间等等。

以上就是常见操作系统的行为。这里的关键问题是,什么样的page可以被撤回?并且该使用什么样的策略来撤回page?

学生回答:Least Recently Used

是的,这是最常用的策略,Least Recently Used,或者叫LRU。除了这个策略之外,还有一些其他的小优化。如果你要撤回一个page,你需要在dirty page和non-dirty page中做选择。dirty page是曾经被写过的page,而non-dirty page是只被读过,但是没有被写过的page。你们会选择哪个来撤回?

学生回答:我会选择dirty page,因为它在某个时间点会被重新写回到内存中。

如果dirty page之后再被修改,现在你或许需要对它写两次了(注,一次内存,一次文件),现实中会选择non-dirty page。如果non-dirty page出现在page table1中,你可以将内存page中的内容写到文件中,之后将相应的PTE标记为non-valid,这就完成了所有的工作。之后你可以在另一个page table重复使用这个page。所以通常来说这里优先会选择non-dirty page来撤回。

学生提问:对于一个cache,我们可以认为它被修改了但是还没有回写到后端存储时是dirty的。那么对于内存page来说,怎么判断dirty?它只存在于内存中,而不存在于其他地方。那么它什么时候会变成dirty呢?

Frans教授:对于memory mapped files,你将一个文件映射到内存中,然后恢复它,你就会设置内存page为dirty。

学生提问:所以这只对一个不仅映射了内存,还映射了文件的page有效?

Frans教授:是的,完全正确。(注,这里应该是答非所问,一个page只要最近被写过,那么就会是dirty的)

如果你们再看PTE,我们有RSW位,你们可以发现在bit7,对应的就是Dirty bit。当硬件向一个page写入数据,会设置dirty bit,之后操作系统就可以发现这个page曾经被写入了。类似的,还有一个Access bit,任何时候一个page被读或者被写了,这个Access bit会被设置。

为什么这两个信息重要呢?它们能怎样帮助内核呢?

学生回答:没有被Access过的page可以直接撤回,是吗?

是的,或者说如果你想实现LRU,你需要找到一个在一定时间内没有被访问过的page,那么这个page可以被用来撤回。而被访问过的page不能被撤回。所以Access bit通常被用来实现这里的LRU策略。

学生提问:那是不是要定时的将Access bit恢复成0?

Frans教授:是的,这是一个典型操作系统的行为。操作系统会扫描整个内存,这里有一些著名的算法例如clock algorithm,就是一种实现方式。

另一个学生提问:为什么需要恢复这个bit?

Frans教授:如果你想知道page最近是否被使用过,你需要定时比如每100毫秒或者每秒清除Access bit,如果在下一个100毫秒这个page被访问过,那你就知道这个page在上一个100毫秒中被使用了。而Access bit为0的page在上100毫秒未被使用。这样你就可以统计每个内存page使用的频度,这是一个成熟的LRU实现的基础。(注,可以通过Access bit来决定内存page 在LRU中的排名)